如图,在直角坐标系中,抛物线y=x2-x-6与x轴交与A、B两点(A点在B点的左侧),与y轴交与C点,如果点M在y轴右侧抛物线上,且,那么点M的坐标是________

发布时间:2020-08-11 11:13:13

如图,在直角坐标系中,抛物线y=x2-x-6与x轴交与A、B两点(A点在B点的左侧),与y轴交与C点,如果点M在y轴右侧抛物线上,且,那么点M的坐标是________.

网友回答

(1,-6)或(4,6)
解析分析:根据抛物线的定义可求出m=2,然后再令y=0,解方程求出A,B两点,再令x=0,求出C点坐标,设出M点坐标,根据它在抛物线上和S△ABO= S△COB,这两个条件求出M点坐标.

解答:解:∵y=x2-x-6为抛物线,
∵抛物线y=x2-x-6与x轴交于A,B两点,
令y=0,设方程x2-x-6=0的两根为x1,x2,
∴x1=-2,x2=3,
∴A(-2,0),B(3,0),
设M点坐标为(a,a2-a-6),(a>0)
∵S△AMO=S△COB,
∴×AO×yM=××OC×xB
∴×2×|a2-a-6|=××6×3,
解得,a1=0,a2=1,a3=-3,a4=4,
∵点M在y轴右侧的抛物线上,
∴a>0,
∴a=1或a=4,
a2-a-6=12-1-6=-6,或a2-a-6=42-4-6=6
∴M点坐标为(1,-6)或(4,6).
以上问题属网友观点,不代表本站立场,仅供参考!