数列{an}的前n项和为Sn=npan(n∈N*)且a1≠a2,(1)求常数p的值;(2)证明:数列{an}是等差数列.
网友回答
(1)当n=1时,a1=pa1,若p=1时,a1+a2=2pa2=2a2,
∴a1=a2,与已知矛盾,故p≠1.则a1=0.
当n=2时,a1+a2=2pa2,∴(2p-1)a2=0.
∵a1≠a2,故p=12
======以下答案可供参考======
供参考答案1:
s1=a1=pa1,则p=1,又a1不等于a2,则a(n+1)=s(n+1)-sn=(n+1)a(n+1)-nan,则a(n+1)=an,又a1+a2=2a2,得a1=a2,所以你写的题有问题。。。
供参考答案2:
(1)n=1 因s1=a1,得a1=s1=1pa1所以p=1
(2)Sn-1=(n-1)an-1
Sn-Sn-1=an=nan-(n-1)an-1得an-an-1=0=d
故an是等差数列