已知函数?.若对任意的实数x1,x2,x3,不等式f(x1)+f(x2)>f(x3)恒成立,则实数k的取值范围是________.

发布时间:2020-08-12 03:42:02

已知函数?.若对任意的实数x1,x2,x3,不等式f(x1)+f(x2)>f(x3)恒成立,则实数k的取值范围是________.

网友回答

≤4
解析分析:函数?的解析式可化为f(x)=,令t=,(t≥3),则f(x)=y=1+,结合反比例函数的单调性,分类讨论函数的单调性,并分析出函数的值域,构造关于k的不等式,求出各种情况下实数k的取值范围,最后综合讨论结果,可得实数k的取值范围.

解答:∵函数?=
令t=,(t≥3)
则f(x)=y=1+
若k-1<0,即k<1,函数y=1+在[3,+∞)上为增函数此时的函数f(x)=y值域为[1+,1)若不等式f(x1)+f(x2)>f(x3)恒成立
则2(1+)≥1,就可以满足条件
解得<1若k-1=0,即k=1,
f(x)=1,不等式f(x1)+f(x2)>f(x3)显然成立若k-1>0,即k>1函数y=1+在[3,+∞)上为减函数此时的函数f(x)=y值域为(1,1+]若不等式f(x1)+f(x2)>f(x3)恒成立
则1+1≥1+,
解得1<k≤4
综上所述:≤4
以上问题属网友观点,不代表本站立场,仅供参考!