如图,已知直线l经过点D(-1,4),与x轴的负半轴和y轴的正半轴分别交于A,B两点,且直角△AOB的内切圆的面积为π,求直线l对应的一次函数的表达式.

发布时间:2020-08-10 08:29:12

如图,已知直线l经过点D(-1,4),与x轴的负半轴和y轴的正半轴分别交于A,B两点,且直角△AOB的内切圆的面积为π,求直线l对应的一次函数的表达式.

网友回答

解:设直角△AOB的内切圆⊙M与OA、OB、AB分别切于点G、E、F,则∠MGO=∠MFB=∠OEM=90°.
∵⊙M的面积为π,
∴π×ME2=π,
∴ME=1.
∵∠MGO=∠GOE=∠OEM=90°,MG=ME,
∴四边形OGME是正方形,
∴OG=1,点G的坐标为(-1,0).
延长GM交AB于N,则NG⊥OA,
∴N点横坐标与G点横坐标相同,是-1,
又∵直线AB经过点D(-1,4),
∴点N与点D重合.
∴MN=NG-MG=4-1=3.
在RT△MNF中,MN=3,MF=1,
由勾股定理,可知FN=2.
∴sin∠FNM=,tan∠FNM==.
过点F作FP⊥OB于P,交GN于H,则FP=FH+HP=FH+ME=FH+1,HG=HM+MG=HM+1.
在Rt△HNF中,∠FHN=90°,FN=2,sin∠FNH=,
∴FH=FN?sin∠FNH=,
∴FP=+1=;
在RT△MHF中,∠FHN=90°,FH=,tan∠MFH=tan∠FNM=,
∴HM=FH?tan∠MFH=×=,
∴HG=+1=,
∴点F的坐标为(-,).
设直线l的解析式为y=kx+b.
∵直线l经过点D(-1,4),点F(-,),
∴,
解得.
故所求直线l的解析式为y=2x+4+2.
解析分析:要求直线l对应的一次函数的表达式,由直线l经过点D(-1,4),根据待定系数法,只需求出此直线上另外一点F的坐标即可.设直角△AOB的内切圆⊙M与OA、OB、AB分别切于点G、E、F.先由直角△AOB的内切圆的面积为π,得出其内切圆面积为1,易证四边形OGME是正方形,得出点G的坐标为(-1,0).再延长GM交AB于N,证明点N与点D重合.然后过点F作FP⊥OB于P,交GN于H.分别解RT△MNF和RT△HNF,求出点F的坐标.

点评:本题主要考查了直角三角形内切圆半径的求法,切线的性质,正方形的判定与性质,解直角三角形及运用待定系数法求一次函数的解析式,综合性较强,有一定难度.
以上问题属网友观点,不代表本站立场,仅供参考!