如图,在平面直角坐标系xOy中,函数y=-x的图象l是第二、四象限的角平分线.实验与探究:由图观察易知A(-1,3)关于直线l的对称点A′的坐标为(-3,1),请你写

发布时间:2020-08-08 21:08:44

如图,在平面直角坐标系xOy中,函数y=-x的图象l是第二、四象限的角平分线.实验与探究:由图观察易知A(-1,3)关于直线l的对称点A′的坐标为(-3,1),请你写出点B(5,3)关于直线l的对称点B′的坐标:________;
归纳与发现:
结合图形,自己选点再试一试,通过观察点的坐标,你会发现:坐标平面内任一点P(m,n)关于第二、四象限的角平分线l的对称点P′的坐标为________;
运用与拓广:
已知两点C(6,0),D(2,4),试在直线l上确定一点,使这点到C,D两点的距离之和最小,在图中画出这点的位置,保留作图痕迹,并求出这点的坐标.

网友回答

(-3,-5)    (-n,-m)
解析分析:直接根据A(-1,3)关于直线l的对称点A′的坐标为(-3,1)即可得出点B(5,3)关于直线l的对称点B′的坐标;
归纳与发现:根据AB关于直线y=-x对称的点的坐标特点即可得出点P(m,n)关于第二、四象限的角平分线l的对称点P′的坐标;
运用与拓广:作点C关于直线?l?的对称点C',连接C'D,交?l于点E,连接CE,根据两点之间线段最短可确定出E点,利用待定系数法求出直线C'D的解析式,故可得出E点坐标.

解答:解:∵A(-1,3)关于直线l的对称点A′的坐标为(-3,1),
∴B'(-3,-5);
∵A(-1,3),B(5,3)关于直线l的对称点A′的坐标为(-3,1),B'(-3,-5);
∴P'(-n,-m).
运用与拓广:
如图,作点C关于直线?l?的对称点C',连接C'D,交?l于点E,连接CE.
由作图可知,EC=EC',
∴EC+ED=EC'+ED=C'D.
∴点E为所求.???
∵C(6,0),
∴C'(0,-6).
设直线C'D的解析式为y=kx-6.
∵D(2,4),
∴k=5.
∴直线C'D的解析式为y=5x-6.
由得
∴E(1,-1).

点评:本题考查的是一次函数综合题,根据题意得出关于直线y=-x对称的点的坐标特点是解答此题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!