在坡角为30°的山坡上,一树的上部BC被台风“珍珠”括断后使树梢着地,且与山坡的坡面成30°角,若树梢着地处C与树根A的坡面距离为2米,求原来树的高度.(精确到0.0

发布时间:2020-08-08 08:47:58

在坡角为30°的山坡上,一树的上部BC被台风“珍珠”括断后使树梢着地,且与山坡的坡面成30°角,若树梢着地处C与树根A的坡面距离为2米,求原来树的高度.(精确到0.01米)

网友回答

解:过点C作CH⊥BA,交BA的延长线于H.
则∠ACH=30°;
∵AC=2米,∴AH=1米;
CH=AC?cos30°==(米);
在Rt△BCH中,∠BCH=∠BCA+∠ACH=60°;
∴BC=米,BH=CH?tan60°==3(米);
∴AB=BH-AH=3-1=2(米);
∴AB+BC=2+≈5.46米.
答:原来树的高度为5.46米.
解析分析:求原来树的高度,即求AB+BC的值,可通过构建直角三角形求解.过C作BA的垂线,设垂足为H;易知:∠ACH=30°,∠BCH=60°;可在Rt△ACH中,先求出CH、AH的长;进而在Rt△BCH中,求出BC、BA的长,由此得解.

点评:应用问题尽管题型千变万化,但关键是设法化归为解直角三角形问题,必要时应添加辅助线,构造出直角三角形.
以上问题属网友观点,不代表本站立场,仅供参考!