设随机变量服从参数为入的指数分布,期望和方差怎么求,指数分布的期望和方差
网友回答
指数分布的参数为λ,则指数分布的期望为1/λ;方差为(1/λ)^2
E(X)==∫x*f(x)dx==∫λx*e^(-λx)dx=-(xe^(-λx)+1/λ*e^(-λx))|(正无穷到0)=1/λ
E(X^2)==∫x^2*f(x)dx=∫x^2*λ*e^(λx)dx=-(2/λ^2*e^(-λx)+2x*e^(-λx)+λx^2*e^(-λx))|(正无穷到0)=2/λ^2
DX=E(X^2)-(EX)^2=2/λ^2-(1/λ)^2=1/λ^2
扩展资料
指数分布的应用
在日本的工业标准和美国军用标准中,半导体器件的抽验方案都是采用指数分布。此外,指数分布还用来描述大型复杂系统(如计算机)的平均故障间隔时间MTBF的失效分布。
但是,由于指数分布具有缺乏“记忆”的特性。因而限制了它在机械可靠性研究中的应用,所谓缺乏“记忆”,是指某种产品或零件经过一段时间t0的工作后,仍然如同新的产品一样,不影响以后的工作寿命值。
或者说,经过一段时间t0的工作之后,该产品的寿命分布与原来还未工作时的寿命分布相同。指数分布的这种特性,与机械零件的疲劳、磨损、腐蚀、蠕变等损伤过程的实际情况是完全矛盾的,它违背了产品损伤累积和老化这一过程。所以,指数分布不能作为机械零件功能参数的分布形式。
网友回答
期望值:
方差:
指数分布可以用来表示独立随机事件发生的时间间隔,比如旅客进机场的时间间隔,在排队论中,一个顾客接受服务的时间长短(等待时间等)也可以用指数分布来近似。
因为参数λ表示的是每单位时间内发生某事件的次数,即时间的发生强度,所以其倒数 1/λ(实际上是指数分布期望)可以表示为事件发生之间的间隔,即等待时间。如果平均每个小时接到2次电话(λ=2),那么预期等待每一次电话的时间是0.5个小时。
扩展资料
(1)随机变量X的取值范围是从0到正无穷;
(2)密度函数极大值在x=0处,即f(x)=λ;
(3)密度函数曲线随着x的增大,迅速递减;λ越大,密度函数曲线在零点附近越高,下降越急速;
(4)λ越大,分布函数曲线在零点附近越高,上升越急速,更早达到天花板(即p=1);熟记,指数分布的期望值和方差为µ=1/λ,σ2=1/λ2。
参考资料来源:百度百科-指数分布