已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.

发布时间:2020-08-10 07:26:52

已知:如图,P是∠AOB的角平分线OC上一点.PE⊥OA于E.以P点为圆心,PE长为半径作⊙P.求证:⊙P与OB相切.

网友回答

证明:过点P作PD⊥OB于D,
∵P是∠AOB的角平分线OC上一点,PE⊥OA,
∴PD=PE,
即P到直线OB的距离等于⊙P的半径PE,
∴⊙P与OB相切.
解析分析:首先过点P作PD⊥OB,由P是∠AOB的角平分线OC上一点,PE⊥OA,根据角平分线的性质,即可得PD=PE,则可得P到直线OB的距离等于⊙P的半径PE,则可证得:⊙P与OB相切.

点评:此题考查了切线的判定与角平分线的性质.此题难度不大,解题的关键是准确作出辅助线,注意掌握圆的切线的判定方法.
以上问题属网友观点,不代表本站立场,仅供参考!