如图,已知MN是⊙O的直径,直线PQ与⊙O相切于P点,NP平分∠MNQ.
(1)求证:NQ⊥PQ;
(2)若⊙O的半径R=3,NP=,求NQ的长.
网友回答
(1)证明:连接OP.
∵直线PQ与⊙O相切于P点,
∴OP⊥PQ,
∵OP=ON,
∴∠OPN=∠ONP,
又∵NP平分∠MNQ,
∴∠OPN=∠PNQ,
∴OP∥NQ
∴NQ⊥PQ;
(2)解:连接MP.
∵MN是直径,
∴∠MPN=90°,
∴cos∠MNP===,
∴∠MNP=30°,
∴∠PNQ=30°,
∴直角△PNQ中,NQ=NP?cos30°=3×=.
解析分析:(1)连接OP,则OP⊥PQ,然后证明OP∥NQ即可;
(2)连接MP,在直角△MNP中,利用三角函数求得∠MNP的度数,即可求得∠PNQ的值,然后在直角△PNQ中利用三角函数即可求解.
点评:本题考查了切线的性质以及三角函数,正确利用三角函数求得∠MNP的度数是关键.