已知函数.
(Ⅰ)当时,利用函数单调性的定义判断并证明f(x)的单调性,并求其值域;
(Ⅱ)若对任意x∈[1,+∞),f(x)>0,求实数a的取值范围.
网友回答
解:(Ⅰ)任取x1,x2∈[1,+∞),且x1<x2,
则△x=x2-x1>0,=,…
当,
∵1≤x1<x2,∴,恒成立
∴△y>0,
∴f(x)在[1,+∞)上是增函数,
∴当x=1时,f(x)取得最小值为,
∴f(x)的值域为.
(Ⅱ),
∵对任意,恒成立
∴只需对任意x∈[1,+∞),x2+2x+a>0恒成立.
设g(x)=x2+2x+a,x∈[1,+∞),
∵g(x)的对称轴为x=-1,∴只需g(1)>0便可,g(1)=3+a>0,
∴a>-3.
解析分析:(I)利用函数单调性的定义,设1≤x1<x2,利用作差法比较f(x1)与f(x2)的大小,进而证明函数f(x)为单调减函数,再利用单调性求函数最值即可;
(II)根据题意:“对任意恒成立”转化为“只需对任意x∈[1,+∞),x2+2x+a>0恒成立”.再设g(x)=x2+2x+a,x∈[1,+∞),利用二次函数的性质求出最小值,即可得到实数a的取值范围.
点评:本题主要考查了函数单调性的定义,利用定义证明函数的单调性的方法和步骤,作差法比较大小,代数变形能力,属中档题.