如图,在?ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由.

发布时间:2020-08-06 10:11:43

如图,在?ABCD中,BD是对角线,AE⊥BD于点E,CF⊥BD于点F,试判断四边形AECF是不是平行四边形,并说明理由.

网友回答

解:四边形AECF是平行四边形.
理由如下:∵AE⊥BD于点E,CF⊥BD于点F,
∴∠AEF=∠CFE=90°,
∴AE∥CF(内错角相等,两直线平行),
在平行四边形ABCD中,AB=CD,AB∥CD,
∴∠ABE=∠CDF,
在△ABE与△DCF中,,
∴△ABE≌△CDF(AAS),
∴AE=CF,
∴四边形AECF是平行四边形(有一组对边平行且相等的四边形是平行四边形).
解析分析:根据垂直,利用内错角相等两直线平行可得AE∥CF,在根据平行四边形的性质证明△ABE与△DCF全等,根据全等三角形对应边相等可得AE=CF,然后根据有一组对边平行且相等的四边形是平行四边形即可证明.

点评:本题考查了平行四边形的性质与判定,利用三角形全等证明得到AE=CF是证明的关键.
以上问题属网友观点,不代表本站立场,仅供参考!