如图,等腰△ABC中,AC=BC=10,AB=12,以BC为直径作⊙0交AB于D,交AC于G,DF⊥AC,垂足为F,交CB的延长线于点E,则sinE=________.
网友回答
解析分析:连接BG,可得BG∥EF,那么∠E=∠GBC,都表示出BG2,利用勾股定理求得CG的值,CG:BC即为sinE的值.
解答:解:连接BG,
∵BC为直径,
∴BG⊥AC,
∵DF⊥AC,
∴BG∥EF,
∴∠E=∠GBC,
设CG为x,则在RT△BCG中,BG==,
∴BG2=100-x2,
在RT△ABG中,BG2=144-(10-x)2,
则100-x2=144-(10-x)2,
解得x=,
∴sinE=sin∠GBC=CG:BC=,
故