如图,在△ABC中,AB=AC,以AB为直径的⊙O分别交BC、AC于点D、E,连接EB交OD于点F.
(1)求证:OD⊥BE;
(2)若DE=,AB=,求AE的长.
网友回答
证明:(1)连接AD.
∵AB是⊙O的直径,
∴∠ADB=∠AEB=90°,
∵AB=AC,
∴DC=DB.
∵OA=OB,
∴OD∥AC.
∴∠OFB=∠AEB=90°,
∴OD⊥BE.
解:(2)设AE=x,
∵OD⊥BE,
∴可得OD是BE的中垂线,
∴DE=DB,
∴∠1=∠2,
∴BD=ED=,
∵OD⊥EB,
∴FE=FB.
∴OF=AE=,DF=OD-OF=.
在Rt△DFB中,;
在Rt△OFB中,;
∴=.
解得,即.
解析分析:(1)连接AD.根据直径所对的圆周角是直角、等腰三角形的性质以及平行线的性质即可证明;
(2)设AE=x.根据圆周角定理的推论和勾股定理进行求解.
点评:此题综合运用了圆周角定理的推理、勾股定理以及等腰三角形的性质.