如图,AB是半圆O的直径,过半圆O上的一点D分别作AB的垂线与半圆O的切线,交直线AB于点E与点C,过点B平行于CD的直线交DE于点F,连接OD,BD.
(1)求证:BF=DF;
(2)若EF=3,,求线段BC的长.
网友回答
(1)证明:∵CD是切线,∴OD⊥CD,即∠BDC+∠ODB=90°.
∵DE⊥AB,∴∠BDE+∠OBD=90°.
∵OB=OD,∴∠OBD=∠ODB.
∴∠BDC=∠BDE.
又∵BF∥CD,∴∠BDC=∠DBF.
∴∠BDE=∠DBF.
∴BF=DF.
(2)解:∵∠BOD+∠ODE=90°,∠CDE+∠ODE=90°,
∴∠BOD=∠CDE.
又∵BF∥CD,∴∠BFE=∠CDE.
∴∠BOD=∠BFE.
在Rt△BEF中,∵,
∴.
∵BE2+EF2=BF2,∴,
解得BF=5.∴BE=4,DF=5.
∵BF∥DC,∴=,得,
∴.
解析分析:(1)若要证BF=DF,则需证∠BDE=∠DBF,∠BDC=∠DBF,再证∠BDC=∠BDE,由∠BDC+∠ODB=90°和∠BDE+∠OBD=90°即可证得.
(2)此题可先由(1)得∠BFE=∠BOD,在Rt△BEF中求得各边的长,则DF也可求出,再由BF∥DC得=,解得BC的长.
点评:本题考查了切线的性质、解直角三角形等综合性问题,难度稍大.