如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为________.
网友回答
50
解析分析:如图,先得到AC=BC=1,AB=ACCD==,然后进行分类讨论:如等腰直角三角形ACB的边长为1,每个小方格可得到4个这样的三角形,则这样的三角形的个数为6×4=24个;如等腰直角三角形ABE的边长为,每两个相邻的小方格可得到4个这样的三角形,则这样的三角形的个数为7×2=14个;如等腰直角三角形DHE的边长为2,每四个小方格组成的大正方形可得到4个这样的三角形,则这样的三角形的个数为2×4=8个;如等腰直角三角形ACB的边长为,矩形方格纸上上下两边各有两个满足条件的三角形的直角顶点,则这样的三角形的个数为4个,然后把它们相加即可.
解答:如图,AC=BC=1,AB=AC,CD==,
当等腰直角三角形的直角边长为1时(如等腰直角三角形ACB),这样的三角形的个数为6×4=24个;
当等腰直角三角形的直角边长为时(如等腰直角三角形ABE),这样的三角形的个数为7×2=14个;
当等腰直角三角形的直角边长为2时(如等腰直角三角形DHE),这样的三角形的个数为2×4=8个;
当等腰直角三角形的直角边长为时(如等腰直角三角形ACB),这样的三角形的个数为4个,
所以满足条件的等腰直角三角形的个数为24+14+8+4=50.
故