先阅读下面的内容,再解决问题,
例题:若m2+2mn+2n2-6n+9=0,求m和n的值.
解:∵m2+2mn+2n2-6n+9=0
∴m2+2mn+n2+n2-6n+9=0
∴(m+n)2+(n-3)2=0
∴m+n=0,n-3=0
∴m=-3,n=3
问题(1)若x2+2y2-2xy+4y+4=0,求xy的值.
(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b-41,且c是△ABC中最长的边,求c的取值范围.
网友回答
解:(1)x2+2y2-2xy+4y+4,
=x2-2xy+y2+y2+4y+4,
=(x-y)2+(y+2)2,
=0,
∴x-y=0,y+2=0,
解得x=-2,y=-2,
∴xy=(-2)-2=;
(2)∵a2+b2=10a+8b-41,
∴a2-10a+25+b2-8b+16=0,
即(a-5)2+(b-4)2=0,
a-5=0,b-4=0,
解得a=5,b=4,
∵c是△ABC中最长的边,
∴5≤c<9.
解析分析:(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出x、y的值,然后代入代数式计算即可;
(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出a、b的值,然后利用三角形的三边关系即可求解.
点评:本题考查了完全平方公式以及非负数的性质,利用完全平方公式配方成平方和的形式是解题的关键.