如图,在正方形ABCD中,AB=2,E是AD边上一点(点E与点A,D不重合).BE的垂直平分线交AB于M,交DC于N.
(1)设AE=x,四边形ADNM的面积为S,写出S关于x的函数关系式;
(2)当AE为何值时,四边形ADNM的面积最大?最大值是多少?
网友回答
解:(1)连接ME,设MN交BE于P,根据题意,得
MB=ME,MN⊥BE.
过N作AB的垂线交AB于F.
在Rt△MBP中,∠MBP+∠BMN=90°,
在Rt△MNF中,∠FNM+∠BMN=90°,
∴∠MBP=∠MNF.
在Rt△EBA与Rt△MNF中,
∵AB=FN,
∴Rt△EBA≌Rt△MNF,故MF=AE=x.
在Rt△AME中,AE=x,ME=MB=AB-AM=2-AM,
∴(2-AM)2=x2+AM2.
4-4AM+AM2=x2+AM2,即4-4AM=x2,
解得AM=1-x2.
所以梯形ADNM的面积S=×AD=×2
=AM+AF=AM+AM+MF=2AM+AE
=2(1-x2)+x
=-x2+x+2
即所求关系式为s=-x2+x+2.
(2)s=-x2+x+2=-(x2-2x+1)+=-(x-1)2+
故当AE=x=1时,四边形ADNM的面积S的值最大,最大值是.
解析分析:(1)解题的关键是作辅助线ME、MN,证明出来△EBA≌△MNF,把需要解决的问题转化成解直角三角形的问题,利用勾股定理解答.
(2)根据(1)的