平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是________.

发布时间:2020-08-06 14:11:40

平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是________.

网友回答

2,3,4
解析分析:分类讨论:如图1,根据圆周角定理可以退出点C在以点O为圆心的圆上;
如图2,根据已知条件可知对角∠AOB+∠ACB=180°,则四个点A、O、B、C共圆.分类讨论:如图1,如图2,在不同的四边形中,利用垂径定理、等边△MAO的性质来求OC的长度.

解答:解:如图1,∵∠AOB=120°,∠ACB=60°,
∴∠ACB=∠AOB=60°,
∴点C在以点O为圆心的圆上,且在优弧AB上.
∴OC=AO=BO=2;
如图2,∵∠AOB=120°,∠ACB=60°,
∴∠AOB+∠ACB=180°,
∴四个点A、O、B、C共圆.
设这四点都在⊙M上.点C在优弧AB上运动.
连接OM、AM、AB、MB.
∵∠ACB=60°,
∴∠AMB=2∠ACB=120°.
∵AO=BO=2,
∴∠AMO=∠BMO=60°.
又∵MA=MO,
∴△AMO的等边三角形,
∴MA=AO=2,
∴MA<OC≤2MA,即2<OC≤4,
∴OC可以取整数3和4.
综上所述,OC可以取整数2,3,4.
以上问题属网友观点,不代表本站立场,仅供参考!