在三角形ABC中,AD,CE为高,两条高所在的直线相交于H点,若CH=AB,求∠ACB的大小为________或________.
网友回答
45° 135°
解析分析:根据同角的余角相等求出∠DCH=∠DAB,再利用“角角边”证明△ABD和△CHD全等,根据全等三角形对应边相等可得AD=CD,求出△ACD是等腰直角三角形,再根据等腰直角三角形的性质求出∠ACD=45°,然后分△ABC是锐角三角形和钝角三角形两种情况求解即可.
解答:解:∵AD,CE为高,
∴∠ADB=∠CEB=90°,
∴∠BAD+∠B=90°,
∠DCH+∠B=90°,
∴∠DCH=∠DAB,
在△ABD和△CHD中,,
∴△ABD≌△CHD(AAS),
∴AD=CD,
∵AD是高,
∴△ACD是等腰直角三角形,
∴∠ACD=45°,
如图1,△ABC是锐角三角形时,∠ACB=∠ACD=45°,
如图2,△ABC是钝角三角形时,∠ACB=180°-∠ACD=180°-45°=135°,
所以,∠ACB的大小为45°或135°.
故