如图1,在Rt△ABC中,∠ACB=90°,CD为AB上的高,AF为∠BAC的角平分线,AF交CD于点E,交BC于点F.
(1)如图1,①∠ACD______∠B(选填“<,=,>”中的一个)②如图1,求证:CE=CF;
(2)如图1,作EG∥AB交BC于点G,若AD=a,△EFG为等腰三角形,求AC(含a的代数式表示);
(3)如图2,过BC上一点M,作MN⊥AB于点N,使得MN=ED,探索BM与CF的数量关系.
网友回答
(1)解:①∠ACD=∠B,
理由是:∵CD⊥AB,∠ACB=90°,
∴∠CDA=90°,
∴∠CAD+∠ACD=90°,∠B+∠CAD=90°,
∴∠ACD=∠B,
故