在直角坐标系中有三点A(0,1),B(1,3),C(2,6);已知直线y=ax+b上横坐标为0、1、2的点分别为D、E、F.试求a,b的值使得AD2+BE2+CF2达

发布时间:2020-08-10 20:26:26

在直角坐标系中有三点A(0,1),B(1,3),C(2,6);已知直线y=ax+b上横坐标为0、1、2的点分别为D、E、F.试求a,b的值使得AD2+BE2+CF2达到最小值.

网友回答

解:由题意可得:D(0,b),E(1,a+b),F(2,2a+b),
∴AD2+BE2+CF2=(b-1)2+(a+b-3)2+(2a+b-6)2,
=(b-1)2+[(a-3)+b]2+[2(a-3)+b]2,
=3b2-2b+1+5(a-3)2+6(a-3)b,
=5[a-3+()]2+b2-2b+1,
=5[a-3+()]2+(b-)2+,
∴a-3+=0,b-=0.
解得a=,b=时,有最小值为.
解析分析:先求出D(0,b),E(1,a+b),F(2,2a+b),根据坐标可列出AD、BE、CF的表达式.

点评:此题考查了函数图象上点的坐标特征,将AD2+BE2+CF2转化为完全平方式,再根据非负数的性质求出最值是常用的方法.
以上问题属网友观点,不代表本站立场,仅供参考!