如图,四边形OABC为直角梯形,A(4,0),B(3,4),C(0,4).点M从O出发以每秒2个单位长度的速度向A运动;点N从B同时出发,以每秒1个单位长度的速度向C运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N作NP垂直x轴于点P,连接AC交NP于Q,连接MQ.
(1)点______(填M或N)能到达终点;
(2)求△AQM的面积S与运动时间t的函数关系式,并写出自变量t的取值范围,当t为何值时,S的值最大;
(3)是否存在点M,使得△AQM为直角三角形?若存在,求出点M的坐标;若不存在,说明理由.
网友回答
解:(1)点M.
(2)经过t秒时,NB=t,OM=2t,
则CN=3-t,AM=4-2t,
∵A(4,0),C(0,4),
∴AO=CO=4,
∵∠AOC=90°,
∴∠BCA=∠MAQ=45°,
∴QN=CN=3-t
∴PQ=1+t,
∴S△AMQ=AM?PQ=(4-2t)(1+t)=-t2+t+2.
∴S=-t2+t+2=-t2+t-++2=-(t-)2+,
∵0≤t<2
∴当时,S的值最大.
(3)存在.
设经过t秒时,NB=t,OM=2t
则CN=3-t,AM=4-2t
∴∠BCA=∠MAQ=45°
①若∠AQM=90°,则PQ是等腰Rt△MQA底边MA上的高
∴PQ是底边MA的中线
∴PQ=AP=MA
∴1+t=(4-2t)
∴t=
∴点M的坐标为(1,0)
②若∠QMA=90°,此时QM与QP重合
∴QM=QP=MA
∴1+t=4-2t
∴t=1
∴点M的坐标为(2,0).
解析分析:(1)(BC÷点N的运动速度)与(OA÷点M的运动速度)可知点M能到达终点.
(2)经过t秒时可得NB=y,OM-2t.根据∠BCA=∠MAQ=45°推出QN=CN,PQ的值.求出S与t的函数关系式后根据t的值求出S的最大值.
(3)本题分两种情况讨论(若∠AQM=90°,PQ是等腰Rt△MQA底边MA上的高;若∠QMA=90°,QM与QP重合)求出t值.
点评:本题考查的是二次函数的有关知识,考生还需注意的是要学会全面分析问题的可行性继而解答.