一次函数y=(m2-4)x+(1-m)和y=(m+2)x+(m2-3)的图象分别与y轴交于点P和Q,这两点关于x轴对称,则m的值是A.2B.2或-1C.1或-1D.-1
网友回答
D
解析分析:根据函数解析式求出P、Q的坐标,再由P点和Q点关于x轴对称列出等式解得m的值.
解答:由两函数解析式可得出:P(0,1-m),Q(0,m2-3),又∵P点和Q点关于x轴对称,∴可得:1-m=-(m2-3),解得:m=2或m=-1.∵y=(m2-4)x+(1-m)是一次函数,∴m2-4≠0,∴m≠±2,∴m=-1.故选D.
点评:本题考查一次函数图象上点的坐标特征及关于x轴对称点的坐标特点,关键在于根据函数解析式求出P、Q的坐标,属于基础题,比较简单.