如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为________.

发布时间:2020-08-06 07:43:57

如图,正方形ABCD,点P是对角线AC上一点,连接BP,过P作PQ⊥BP,PQ交CD于Q,若AP=2,CQ=5,则正方形ABCD的面积为________.

网友回答

81

解析分析:作PE⊥AD与E,过点P作FG⊥CD于G,交AB于F,根据已知条件以及正方形ABCD的性质,易证明四边形AEPF是正方形,则其边长是2,易证得△PQG≌△BPF,则QG=PF=2,则大正方形的边长是9,进而可得其面积.

解答:解:作PE⊥AD与E,过点P作PF⊥AB于F,延长FP交CD于G,
∵正方形ABCD,
∴∠DAC=∠BAC=45°,∠DAB=90°=∠PEA=∠PFA,
∴PE=PF,
∴四边形AEPF是正方形,
∴AE=PE=PF=AF,
∵AP=2,由勾股定理得:AE2+PE2=,
∴AE=PE=PF=AF=2,
∴PG=BF,且∠PFB=∠PGQ=90°;
∵∠FBP+∠FPB=90°,
∴∠FBP=∠GPQ,
在△PQG和△BPF中

∴△PQG≌△BPF,则QG=PF=2,
∴AB=BC=CD=2+2+5=9,
则大正方形的边长是9,即面积是81;故
以上问题属网友观点,不代表本站立场,仅供参考!