(1)如图1,线段AB与⊙O相切于点C,连接OA,OB,已知OA=OB=5cm,AB=8cm,求⊙O的半径.(2)已知:如图2,△ABC和△ECD都是等腰直角三角形,

发布时间:2020-08-06 07:43:52

(1)如图1,线段AB与⊙O相切于点C,连接OA,OB,已知OA=OB=5cm,AB=8cm,求⊙O的半径.
(2)已知:如图2,△ABC和△ECD都是等腰直角三角形,∠ACB=∠DCE=90°,D为AB边上一点,求证:AE=BD.

网友回答

(1)解:连接OC.
∵AB与⊙O相切于点C,
∴OC⊥AB.
又∵OA=OB,
∴AC=BC=AB=4cm?????????????????
在Rt△AOC中,
OC==3cm,
∴半径为3cm.

(2)证明:∵∠ACB=∠DCE=90°,
∴∠BCD+∠DCA=90°,∠ACB+∠DCA=90°.
∴∠BCD=∠ACB.
又∵△ABC和△ECD都是等腰直角三角形,
∴BC=AC,DC=EC.
∴△BCD≌△ACE.
∴AE=BD.

解析分析:(1)连接OC,则OC⊥AB.根据等腰三角形性质知AC=AB.运用勾股定理可求半径OC;
(2)根据SAS证明△ACE≌△BCD即可.

点评:此题考查切线的性质、等腰三角形的性质、勾股定理、全等三角形的判定和性质等知识点,综合性较强.
以上问题属网友观点,不代表本站立场,仅供参考!