如图,矩形ABCD中,AB=4,BC=8.若将它沿EF折叠,使点B与点D重合,点A落在点A′处,则tan∠EFD=________.
网友回答
2
解析分析:根据翻折变换的性质得出BF=DF,∠BFE=∠EFD,进而利用平行线的性质得出∠DEF=∠DFE,得出DE=DF,再利用勾股定理求出DE,DF,BF的长,进而得出NF的长,由锐角三角函数关系得出EF的长.
解答:解:过点E作EN⊥BC于点N,
∵将矩形ABCD沿EF折叠,使点B与点D重合,点A落在点A′处,
∴BF=DF,∠BFE=∠EFD,
∵AD∥BC,
∴∠DEF=∠EFB,
∴∠DEF=∠DFE,
∴DE=DF,
设BF=DF=x,则FC=8-x,
在Rt△DFC中,
FD2=FC2+DC2,
∴x2=(8-x)2+42,
解得:x=5,
∴DE=DF=BF=5,
∴AE=3,∴NF=5-3=2,
∴tan∠EFD=tan∠EFN===2.
故