解方程(1)x2-6x=-8;(2)2x2-5x+1=0.

发布时间:2020-08-06 01:29:03

解方程(1)x2-6x=-8;(2)2x2-5x+1=0.

网友回答

解:(1)配方得x2-6x+9=-8+9,
即(x-3)2=1,
开方得x-3=±1,
∴x1=4,x2=2
(2)移项得2x2-5x=-1,
二次项系数化为1,得x2-x=-.
配方,得
x2-x+()2=-+()2
即(x-)2=,
开方得x-=±,
∴x1=,x2=.
解析分析:(1)等式两边同时加上一次项系数-6一半的平方,配方即可.
(2)把常数项移到等号的右边;把二次项的系数化为1;等式两边同时加上一次项系数一半的平方.


点评:用配方法解一元二次方程的步骤:
(1)形如x2+px+q=0型:第一步移项,把常数项移到右边;第二步配方,左右两边加上一次项系数一半的平方;第三步左边写成完全平方式;第四步,直接开方即可.
(2)形如ax2+bx+c=0型,方程两边同时除以二次项系数,即化成x2+px+q=0,然后配方.
以上问题属网友观点,不代表本站立场,仅供参考!