已知关于x的方程kx2-4x-2=0有两个实数根.(1)求k的取值范围;(2)若方程的两个实数根为x1,x2,且x12+x22=4,求k的值.

发布时间:2020-08-06 22:54:52

已知关于x的方程kx2-4x-2=0有两个实数根.
(1)求k的取值范围;
(2)若方程的两个实数根为x1,x2,且x12+x22=4,求k的值.

网友回答

解:(1)∵△≥0时,一元二次方程总有两个实数根,
△=(-4)2-4×k×(-2)=16+8k≥0,
k≤-2,
所以k≤-2时,方程总有两个实数根.
(2)∵方程的两个实数根为x1,x2,且x12+x22=4,
∴(x1+x2)2-2x1x2=78,
∵x1+x2=-,x1?x2=,
∴()2-2×=4,
2k2-k-8=0
解得k=,
故k的值是或.
解析分析:(1)根据判别式在大于等于0时,方程总有两个实数根,确定m的取值范围.
(2)根据根与系数的关系可以求出m的值.

点评:此题主要考查了根的判别式和根与系数的关系,要记住x1+x2=-,x1?x2=.
以上问题属网友观点,不代表本站立场,仅供参考!