如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).小明的思

发布时间:2020-08-07 20:06:41

如图1,在四边形ABCD中,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,分别与BA,CD的延长线交于点M,N,则∠BME=∠CNE(不需证明).
小明的思路是:在图1中,连结BD,取BD的中点H,连结HE,HF,根据三角形中位线定理和平行线性质,可证得∠BME=∠CNE.
问题:如图2,在△ABC中,AC>AB,D点在AC上,AB=CD,E,F分别是BC,AD的中点,连结EF并延长,与BA的延长线交于点G,若∠EFC=60°,连结GD,判断△AGD的形状并证明.

网友回答

解:判断△AGD是直角三角形.
证明:如图连结BD,取BD的中点H,连结HF、HE,
∵F是AD的中点,
∴HF∥AB,HF=AB,
∴∠1=∠3,
同理,HE∥CD,HE=CD,
∴∠2=∠EFC,

∵AB=CD,
∴HF=HE,
∴∠1=∠2,
∵∠EFC=60°,
∴∠3=∠EFC=∠AFG=60°,
∴△AGF为等边三角形,
∵AF=FD,
∴GF=FD,
∴∠FGD=∠FDG=30°,
∴∠AGD=90°,
即△AGD是直角三角形.
解析分析:连结BD,取BD的中点H,连结HF、HE,则HF是△ABD的中位线,HE是△BDC的中位线,从而判断HE=HF,从而得出∠1=∠2,判断△AGF为等边三角形,求出∠FGD=∠FDG=30°后即可得出结论.

点评:本题考查了三角形的中位线定理、全等三角形的判定与性质,解答本题的关键是参考题目给出的思路,作出辅助线,有一定难度.
以上问题属网友观点,不代表本站立场,仅供参考!