如图①,在平面直角坐标系中,平行四边形ABCD在第一象限,直线y=-x从原点出发沿x轴正方向平移,被平行四边形ABCD截得的线段EF的长度l与平移的距离m的函数图象如图②所示,那么平行四边形的面积为
A.B.4C.6D.8
网友回答
D
解析分析:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,则AB=8-4=4,当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.利用三角函数即可求得DM即平行四边形的高,然后利用平行四边形的面积公式即可求解.
解答:解:根据图象可以得到当移动的距离是4时,直线经过点A,当移动距离是7时,直线经过D,在移动距离是8时经过B,
则AB=8-4=4,
当直线经过D点,设交AB与N,则DN=2,作DM⊥AB于点M.
∵y=-x与x轴形成的角是45°,
又∵AB∥x轴,
∴∠DNM=45°,
∴DM=DN?sin45°=2×=2,
则平行四边形的面积是:AB?DM=4×2=8.
故选D.
点评:本题考查了函数的图象,根据图象理解AB的长度,正确求得平行四边形的高是关键.