如图,在△PAB中,点C、D在边AB上,PC=PD=CD,∠APB=120°.
(1)试说明△APC与△PBD相似.
(2)自习课上聪聪在完成课本101页这道习题时作出如下猜想:若CD=1,AC=x,BD=y其余条件不变,那么y与x肯定会存在某种函数关系式,请你求出这种函数关系式.
(3)明明在聪聪猜想的基础上又作出如下猜想:若PC=PD=1,∠CPD=α,∠APB=β,只要α与β满足某种关系,(2)中的函数关系式仍然成立.你同意明明的观点吗?如果你同意请直接写出α与β所满足的关系;若不同意,请说明理由.
网友回答
解:(1)∵PC=PD=CD,
∴∠PCD=∠PDC=∠CPD=60°,
∴∠ACP=∠BDP=120°,
∵∠A+∠APC=60°,∠APC+∠BPD=∠APB-∠CPD=120°-60°=60°,
∴∠A=∠BPD,
∴△APC∽△PBD;
(2)由(1)得=,
∴=,
∴y=(x>0);
(3)同意.
2β-α=180°.
解析分析:(1)根据PC=PD=CD,得∠PCD=∠PDC=∠CPD=60°,则∠ACP=∠BDP=120°,可证明∠A=∠BPD,从而证得△APC与△PBD;
(2)由(1)得=,则=,从而得出y与x的函数关系式;
(3)根据题意仍可得出(2)中的函数关系式,则同意这种说法.
点评:本题是一道综合题,考查了相似三角形的判定和性质,以及函数解析式的确定,是中考压轴题.