已知:如图,BM是⊙O的切线,切点为M,BO交⊙O于点A,PA⊥BO交BM于点P,BO=3,⊙O的半径为1.(1)求BM的长;(2)证明:△OMB∽△PAB.

发布时间:2020-08-09 02:47:46

已知:如图,BM是⊙O的切线,切点为M,BO交⊙O于点A,PA⊥BO交BM于点P,BO=3,⊙O的半径为1.
(1)求BM的长;
(2)证明:△OMB∽△PAB.

网友回答

解:(1)∵BM是⊙O的切线,M是切点,
∴OM⊥BM.
又∵BO=3,⊙O的半径为1,
在Rt△BOM中,


证明:(2)在△OMB和△PAB中,
∵BM是⊙O的切线,
∴∠OMB=90°.
又∵PA⊥BO,
∴∠PAB=90°.
∴∠OMB=∠PAB.
又∵∠B=∠B,
∴△OMB∽△PAB.
解析分析:(1)易知△OBM为直角三角形,在△OBM中用勾股定理求出BM的长.
(2)证明两角对应相等,可以证明两个三角形相似.

点评:综合考查勾股定理及相似三角形的判定.要掌握这些基本性质和定理才能灵活运用,快速解题.
以上问题属网友观点,不代表本站立场,仅供参考!