如图,Rt△ABC中,∠B=Rt∠,点D在边AB上,过点D作DG∥AC交BC于点G,分别过点D,G作DE∥BC,FG∥AB,DE与FG交于点O.当阴影面积等于梯形AD

发布时间:2020-08-07 06:04:09

如图,Rt△ABC中,∠B=Rt∠,点D在边AB上,过点D作DG∥AC交BC于点G,分别过点D,G作DE∥BC,FG∥AB,DE与FG交于点O.当阴影面积等于梯形ADOF的面积时,则阴影面积与△ABC的面积之比为________.

网友回答


解析分析:设△ODG的面积为S,作FH⊥AD于H,连结GE,易得四边形ADGF为平行四边形,可判断Rt△DOG≌Rt△FHA,所以S△AHF=S,由于阴影面积等于梯形ADOF的面积得到矩形HDOF的面积=△OFE的面积,于是有OF?OD=OF?OE,即OE=2OD,然后利用Rt△OEF∽Rt△ODG得到S△OEF=4S,且S△OGE=2S,接着判断四边形DGCE为平行四边形,则S△GEC=S△GED=3S,所以S△ABC=S四边形ADOF+S阴影部分+S△BDG+S△OGCE=16S,最后计算阴影面积与△ABC的面积之比.

解答:设△ODG的面积为S,
作FH⊥AD于H,连结GE,如图,
∵DG∥AC,FG∥AB,
∴四边形ADGF为平行四边形,
∴HF=OD,DG=AF,
∴Rt△DOG≌Rt△FHA,
∴S△AHF=S,
∵阴影面积等于梯形ADOF的面积,
∴矩形HDOF的面积=△OFE的面积,
∴OF?OD=OF?OE,
∴OE=2OD,
∵Rt△OEF∽Rt△ODG,
∴=()2=4,
∴S△OEF=4S,
∵OE=OD,
∴S△OGE=2S△ODG=2S,
∵DE∥GC,
∴四边形DGCE为平行四边形,
∴S△GEC=S△GED=2S+S=3S,
而S△BDG=S△ODG=S,
∴S△ABC=S四边形ADOF+S阴影部分+S△BDG+S△OGCE
=5S+5S+S+5S=16S,
∴阴影面积与△ABC的面积之比==.
以上问题属网友观点,不代表本站立场,仅供参考!