如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成40°夹角,且CB=5米.
(1)求钢缆CD的长度;(精确到0.1米)
(2)若AD=2米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?
(参考数据:tan40°=0.84,sin40°=0.64,cos40°=)
网友回答
解:(1)在Rt△BCD中,,
∴≈6.7;
(2)在Rt△BCD中,BC=5,∴BD=5tan40°=4.2.
过E作AB的垂线,垂足为F,
在Rt△AFE中,AE=1.6,∠EAF=180°-120°=60°,
AF==0.8
∴FB=AF+AD+BD=0.8+2+4.20=7米.
答:钢缆CD的长度为6.7米,灯的顶端E距离地面7米.
解析分析:(1)利用三角函数求得CD的长;
(2)过E作AB的垂线,垂足为F,根据三角函数求得BD、AF的长,则FB的长就是点E到地面的距离.
点评:此题主要考查学生对坡度坡角的理解及解直角的综合运用能力.