如图,?ABCD中,∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为________.
网友回答
解析分析:由平行四边形的性质及直角三角形的性质,推出△CDF为等边三角形,再根据勾股定理解答即可.
解答:∵在平行四边形ABCD中,AB∥CD,∠ABC=60°,
∴∠DCF=60°,
又∵EF⊥BC,
∴∠CEF=30°,
∴CF=CE,
又∵AE∥BD,
∴AB=CD=DE,
∴CF=CD,
又∵∠DCF=60°,
∴∠CDF=∠DFC=60°,
∴CD=CF=DF=DE=2,
∴在Rt△CEF中,由勾股定理得:EF====.
故