如图,长方形ABCD中,E为BC中点,作∠AEC的角平分线交AD于F点.若AB=6,AD=16,则FD的长度为何?A.4B.5C.6D.8
网友回答
C
解析分析:首先由矩形ABCD的性质,得BC=AD=16,已知E为BC中点,则BE=BC÷2=8,根据勾股定理在直角三角形ABE中可求出AE,再由∠AEC的角平分线交AD于F点,得∠AEF=∠CEF,已知矩形ABCD,AD∥BC,则∠AFE=∠CEF,所以∠AEF=∠AFE,所以AF=AE,从而求出FD.
解答:已知矩形ABCD,∴BC=AD=16,又E为BC中点,∴BE=?BC=×16=8,在直角三角形ABE中,AE2=AB2+BE2=62+82=100,∴AE=10,已知矩形ABCD,∴AD∥BC,∴∠AFE=∠CEF,又∠AEC的角平分线交AD于F点,∴∠AEF=∠CEF,∴∠AEF=∠AFE,∴AF=AE=10,∴FD=AD-AF=16-10=6,故选:C.
点评:此题考查的知识点是矩形的性质、角平分线的性质及勾股定理,解题的关键是由勾股定理求出AE,然后由已知推出AE=AF.