如图,将?ABCD的边BA延长到点E,使AE=AB,连接EC,交AD于点F,连接AC、ED.(1)求证:四边形ACDE是平行四边形;(2)若∠AFC=2∠B,求证:四

发布时间:2020-08-08 21:42:07

如图,将?ABCD的边BA延长到点E,使AE=AB,连接EC,交AD于点F,连接AC、ED.
(1)求证:四边形ACDE是平行四边形;
(2)若∠AFC=2∠B,求证:四边形ACDE是矩形.

网友回答

证明:(1)∵?ABCD中,AB=CD且AB∥CD,
又∵AE=CD,
∴AE=CD,AE∥CD,
∴四边形ACDE是平行四边形;

(2)∵?ABCD中,AD∥BC,
∴∠EAF=∠B,
又∵∠AFC=∠EAF+∠AEF,∠AFC=2∠B
∴∠EAF=∠AEF,
∴AF=EF,
又∵平行四边形ACDE中AD=2AF,EC=2EF
∴AD=EC,
∴平行四边形ACDE是矩形.
解析分析:(1)证明AE=CD,AE∥CD,即可证得;
(2)证明△AEF是等腰三角形,则可以证得AD=EC,根据对角线相等的平行四边形是矩形即可证得.

点评:本题考查了平行四边形的性质以及矩形的判定方法,正确证明△AEF是等腰三角形是关键.
以上问题属网友观点,不代表本站立场,仅供参考!