已知:如图,平面PAB⊥平面ABC,平面PAC⊥平面ABC,AE⊥平面PBC,E为垂足.解析:(1)在平面ABC内取一点D,作DF⊥AC于F.平面PAC⊥平面ABC,且交线为AC,∴DF⊥平面PAC.PA平面PAC.∴DF⊥AP.作DG⊥AB于G.同理可证DG⊥AP.DG、DF都在平面ABC内,∴PA⊥平面ABC.(2)连结BE并延长交PC于H.∵E是△PBC的垂心,∴PC⊥BE.又已知AE是平面
网友回答
第三行写错了:PC⊥AE
第一二行:你应该懂
第三行:线面垂直,得到线线垂直(即此直线于平面内任意一条直线垂直)
第四行:线线垂直,得到线面垂直(即某直线与两个相交的直线同时垂直,那么此直线于这两条直线形成的平面垂直)
第五行:线面垂直,得到线线垂直.