已知直线y=kx-4(k>0)与x轴、y轴交于A、C两点,过A、C两点的抛物线开口向上,且与x轴交于一点B.(I)写出A、C两点坐标(可用k表示);(II)若AO=3

发布时间:2020-08-11 15:39:39

已知直线y=kx-4(k>0)与x轴、y轴交于A、C两点,过A、C两点的抛物线开口向上,且与x轴交于一点B.
(I)写出A、C两点坐标(可用k表示);
(II)若AO=3BO,点B到直线AC的距离等于,求直线及抛物线的解析式;
(III)是否存在点A、点B使tan∠ACB=2,且△ABC外接圆截y轴所得弦长等于5,若存在,求过点A、B、C的抛物线解析式,若不存在,说明理由.

网友回答

解:( I)∵直线y=kx-4与x轴、y轴交于A、C两点,
∴y=0,x=,
x=0,y=-4,
∴,C(0,-4);

( II)设A(3α,0),B(-α,0),
在△ABC中,AB?OC=AC?BD,
∴,
∴α=1,
∴A(3,0)B(-1,0),
将A(3,0)代入y=kx-4,得k=,
∴,
设抛物线解析式为y=m(x-3)(x+1),
,将C(0,-4)代入,得m=,
∴;

( III)存在,
如图,设△ABC外接圆圆心为M,作MG⊥x轴,交AB于点E,交圆M于点G,MF⊥y轴于点F
则CO=4,CF=2.5,
∴FO=1.5,
∵MG⊥AB,
∴,∠AME=∠ACB,
Rt△AME中,tan∠AME=2ME=OF,
∴AE=3AB=6,
∵∠CBO=∠ADO,∠BOC=∠DOA,
由△OBC∽△ODA,
得,
∴OB?OA=OD?OC,
设OB=x,则OA=6-x,
∴,
∴,
设所求抛物线解析式为,
将C(0,-4)代入,得a=1,
∴.
解析分析:( I)根据一次函数与坐标轴的交点求法即可得出A,C的坐标;
( II)假设出A,B两点的坐标,得出AB,AC的长度,再利用AB?OC=AC?BD,得出A,B坐标,即可求出直线与抛物线的解析式;
( III)利用解直角三角形的性质得出△OBC∽△ODA,进而求出A,B两点的坐标,即可得出二次函数的解析式.

点评:此题主要考查了二次函数以一次函数的综合题目,主要利用数形结合进行求解,利用三角形的相似得出A,B,两点的坐标是解决问题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!