定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2k,1-k,-1-k],对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值是________.
网友回答
0
解析分析:先根据特征数为[2k,1-k,-1-k]求出函数的解析式,再由对于任意负实数k,当x<m时,y随x的增大而增大可知-≥m,故可得出m的取值范围,进而得出m的最大整数值.
解答:∵函数y=ax2+bx+c的特征数为[2k,1-k,-1-k],
∴二次函数的解析式为:y=2kx2+(1-k)x-1-k,
∵对于任意负实数k,当x<m时,y随x的增大而增大,
∵k为负数,即k<0,
∴2k<0,即函数y=2kx2+(1-k)x-1-k表示的是开口向下的二次函数,
∴在对称轴的左侧,y随x的增大而增大,
∵对于任意负实数k,当x<m时,y随x的增大而增大,
∴x=-=->0,
∴m≤-=-
∵k<0,
∴->0,
∴->,
∵m≤-对一切k<0均成立,
∴m≤-的最小值,
∴m的最大整数值是m=0.
故