解方程组 x3+y3=468 x2y+xy2=420

发布时间:2021-03-15 18:23:27

解方程组 x3+y3=468 x2y+xy2=420

网友回答

记a=x+y,b=xy
x^2y+xy^2=420,化为:xy(x+y)=420,即ab=420
x^3+y^3=468,化为;(x+y)(x^2-xy+y^2)=468,即a(a^2-3b)=468,得:a^3-3ab=468,故a^3-3*420=468
得:a^3=1728
得:a=12
故b=420/a=35
因此x,y为方程t^2-12t+35=0的两根
(t-5)(t-7)=0
t=5,7故原方程有两组(5,7)及(7,5)
以上问题属网友观点,不代表本站立场,仅供参考!