如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.(1)试判断直线CD与⊙O的位置关系,并说明理由;(2)若⊙O的半径长为1,求由弧BC、线

发布时间:2020-08-08 04:09:15

如图,△ABC内接于⊙O,点D在半径OB的延长线上,∠BCD=∠A=30°.
(1)试判断直线CD与⊙O的位置关系,并说明理由;
(2)若⊙O的半径长为1,求由弧BC、线段CD和BD所围成的阴影部分面积.(结果保留π和根号)

网友回答

解:(1)直线CD与⊙O相切,
∵在⊙O中,∠COB=2∠CAB=2×30°=60°,
又∵OB=OC,
∴△OBC是正三角形,
∴∠OCB=60°,
又∵∠BCD=30°,
∴∠OCD=60°+30°=90°,
∴OC⊥CD,
又∵OC是半径,
∴直线CD与⊙O相切.

(2)由(1)得△OCD是Rt△,∠COB=60°,
∵OC=1,
∴CD=,
∴S△COD=OC?CD=,
又∵S扇形OCB=,
∴S阴影=S△COD-S扇形OCB=.
解析分析:(1)由已知可证得OC⊥CD,OC为圆的半径所以直线CD与⊙O相切;
(2)根据已知可求得OC,CD的长,则利用S阴影=S△COD-S扇形OCB求得阴影部分的面积.

点评:此题主要考查学生对切线的性质及扇形的面积公式的理解及运用.
以上问题属网友观点,不代表本站立场,仅供参考!