0)的最小值.3时,求y=2x^2/(x-3)的最小值 3.当0

发布时间:2021-03-15 01:31:15

0)的最小值.3时,求y=2x^2/(x-3)的最小值 3.当0

网友回答

1.y=(x^2+x+1)/(x^2+2x+1)
=(x^2+2x+1-x)/(x^2+2x+1)
=1-x/(x^2+2x+1)
-x/(x^2+2x+1)上下同除以x,
=1-1/(x+2+1/x)
因为x>0,用均值不等式即可解决.
2.y=2x^2/(x-3)
=[2(x-3)^2+12(x-3)+18]\(x-3)
=2(x-3)+12+18/(x-3)
做法同题13.y=(a^2/x)+(b^2/(1-x)
=[(a^2/x)+(b^2/(1-x)]*[x+(1-x)]
拆开,同上,均值不等式
第3题,百分百对!
======以下答案可供参考======
供参考答案1:
一:y=((x+1)^2-x)/(x+1)^2=1-x/(x+1)^2
令y'=x/(x+1)^2 (求其最大值,x>0)y'=1/(x+2+1/x)所以y的最小值为1-1/4=3/4
二:y=2((x-3)^2+6*x-9)/(x-3)=2*(x-3)+12+18/(x-3)
令t=x-3>0y=2*t+18/t+12>=2*((2*t*18/t)^(1/2))+12=24
所以y的最小值为24
三:y>=2(a^2*b^2/(x-x^2))^1/2=2*|a*b|*(1/(x-x^2))^1/2 (1)
令y'=-x^2+xy>=2|a*b|*2=4*|ab|
以上问题属网友观点,不代表本站立场,仅供参考!