已知关于x的一元二次方程x2-(R+r)x+d2=0没有实数根,其中R,r分别为两圆半径,d为两圆的圆心距,你能根据条件确定两圆的位置关系吗?请说明理由.

发布时间:2020-08-09 08:18:11

已知关于x的一元二次方程x2-(R+r)x+d2=0没有实数根,其中R,r分别为两圆半径,d为两圆的圆心距,你能根据条件确定两圆的位置关系吗?请说明理由.

网友回答

解:两圆外离,理由如下:
∵一元二次方程x2-(R+r)x+d2=0没有实数根,
∴b2-4ac<0
即:[-(R+r)]2-4×d2<0
∴(R+r)2-d2<0
∴(R+r+d)(R+r-d)<0
∵R+r+d>0
∴R+r-d<0
即d>R+r
∴两圆外离.
解析分析:首先利用根的判别式得到(R+r)2-d2<0,然后因式分解,得到R+r-d<0,进一步得到d>R+r,从而判断两圆外离.

点评:本题考查了圆与圆的位置关系及根的判别式,利用根的判别式得到d与两半径之间的不等关系是解题的关键.
以上问题属网友观点,不代表本站立场,仅供参考!