如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=4.将腰CD以D为旋转中心逆时针旋转90°至DE,连结AE,则△ADE的面积是A.B.2C.D.不能

发布时间:2020-08-09 08:09:02

如图,直角梯形ABCD中,AD∥BC,AB⊥BC,AD=3,BC=4.将腰CD以D为旋转中心逆时针旋转90°至DE,连结AE,则△ADE的面积是A.B.2C.D.不能确定

网友回答

A
解析分析:如图作辅助线,利用旋转的性质证明△DCG与△DEF全等,再根据全等三角形对应边相等可得EF的长,即△ADE的高,然后得出三角形的面积.

解答:解:如图所示,作EF⊥AD交AD延长线于F,作DG⊥BC,
∵CD以D为中心逆时针旋转90°至ED,
∴∠EDF+∠CDF=90°,DE=CD,
又∵∠CDF+∠CDG=90°,
∴∠CDG=∠EDF,
在△DCG与△DEF中,

∴△DCG≌△DEF(AAS),
∴EF=CG,
∵AD=3,BC=4,
∴CG=BC-AD=4-3=1,
∴EF=1,
∴△ADE的面积是:×AD×EF=×3×1=.
故选A.

点评:本题考查梯形的性质和旋转的性质:旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点为旋转中心;②旋转方向;③旋转角度.
以上问题属网友观点,不代表本站立场,仅供参考!