如图在梯形ABCD中,AD∥BC,E是梯形内一点,ED⊥AD,∠EBC=∠EDC,∠ECB=45°.(1)求证:BE=CD;(2)若梯形ABCD为等腰梯形且DE=3,

发布时间:2020-08-06 13:14:53

如图在梯形ABCD中,AD∥BC,E是梯形内一点,ED⊥AD,∠EBC=∠EDC,∠ECB=45°.
(1)求证:BE=CD;
(2)若梯形ABCD为等腰梯形且DE=3,tan∠DCB=4,试求四边形ABED的周长.

网友回答

解:(1)延长DE交BC于F,
∵AD∥BC,
且ED⊥AD,
∴DE⊥BC,
又∵∠ECB=45°,
∴△ECF为等腰直角三角形.
∴EF=CF,(
∴在△BEF和△DCF中

∴△BEF≌△DCF,
∴BE=CD;

(2)过A作AH⊥BC于H.
设EF=CF=x,
∵Rt△DCF中,
tan∠DCB=,
∴,
x=1,
∴EF=CF=1,
∴DF=DE+EF=4,
∴BF=DF=4,
∴在Rt△DFC中,

∵四边形ABCD为等腰梯形,
∴AB=CD=,
又∵△BEF≌△DCF,
∴BE=CD=,
又∵四边形ABCD为等腰梯形,
∴AB=CD,
又∵AD∥BC且AH⊥BC,DF⊥BC,
∴AH=DF,
∴在Rt△AHB和△DFC中,

∴△AHB≌△DFC(HL),
∴BH=CF=1,
∴HF=BF-BH=4-1=3,
∴四边形ABED的周长为:AB+BE+DE+AD,
=,
=.
解析分析:(1)利用作辅助线的方法,证明△BEF和△DCF全等,从而得到BE=CD,
(2)由tan∠DCB=4,根据给出的三角函数的定义,在△DCF中,tan∠DCB=,过A作AH⊥BC于H,
设EF=CF=x,代入求得x的值,从而求出CD的长,由三角形的全等,CD=BE,证明△AHB≌△DFC,四边形ADFH是矩形,AD=HF,求得
以上问题属网友观点,不代表本站立场,仅供参考!