如图⊙O是△ABC的外接圆,圆心O在这个三角形的高AD上,AB=10,BC=12,求⊙O的半径.
网友回答
解:如图,连接OB.
∵AD是△ABC的高.
∴BD=BC=6
在Rt△ABD中,AD===8.
设圆的半径是R.
则OD=8-R.
在Rt△OBD中,根据勾股定理可以得到:R2=36+(8-R)2
解得:R=.
解析分析:连接OB,根据垂径定理首先求得BD的长,根据勾股定理求得AD的长,可以设出圆的半径,在直角三角形OBD中,利用勾股定理即可列方程求得半径.
点评:本题考查了垂径定理以及勾股定理,关键是根据勾股定理转化成方程问题.