填空题函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有

发布时间:2020-07-28 02:54:43

填空题函数f(x)的定义域为A,若x1,x2∈A且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数.例如,函数f(x)=2x+1(x∈R)是单函数.下列命题:①函数f(x)=x2(x∈R)是单函数;②若f(x)为单函数,x1,x2∈A且x1≠x2,则f(x1)≠f(x2);③若f:A→B为单函数,则对于任意b∈B,它至多有一个原象;④函数f(x)在某区间上具有单调性,则f(x)一定是单函数.其中的真命题是________.(写出所有真命题的编号)

网友回答

②③④解析解:∵,若x1,x2∈A,且f(x1)=f(x2)时总有x1=x2,则称f(x)为单函数∴①函数f(x)=x2不是单函数,∵f(-1)=f(1),显然-1≠1,∴函数f(x)=x2(x∈R)不是单函数; ②∵函数f(x)=2x(x∈R)是增函数,∴f(x1)=f(x2)时总有x1=x2,即②正确;③∵f(x)为单函数,对于任意b∈B,若?x1≠x2,使得f(x1)=f(x2)=b,则x1=x2,与x1≠x2矛盾∴③正确;④例如①函数f(x)=x2在(0,+∞)上是增函数,而它不是单函数;故④不正确
以上问题属网友观点,不代表本站立场,仅供参考!