已知|m-2|+(n+3)2=0,试分别求出m2-2mn+n2和(m-n)2的值.你发现了什么?
网友回答
解:∵|m-2|+(n+3)2=0,
∴m-2=0且n+3=0,
解得:m=2,n=-3,
则m2-2mn+n2=22-2×2×(-3)+(-3)2=4+12+9=25;(m-n)2=[2-(-3)]2=52=25,
发现m2-2mn+n2=(m-n)2.
解析分析:由两个非负数之和为0,两非负数分别为0求出m与n的值,代入已知的两代数式中计算,得到两代数式的值相等,可得出m2-2mn+n2=(m-n)2.
点评:此题考查了代数式求值,非负数的性质:绝对值与偶次方,求出m与n的值是解本题的关键.