如图,在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,AD=DC,E、F分别在AD、DC的延长线上,且DE=CF.AF交BE于P.
(1)证明:△ABE≌△DAF;
(2)求∠BPF的度数.
网友回答
(1)证明:∵在梯形ABCD中,AD∥BC,∠ABC=∠BCD=60°,
∴AB=CD,
∵AD=DC,
∴BA=AD,∠BAE=∠ADF=120°,
∵DE=CF,
∴AE=DF,
在△BAE和△ADF中,
,
∴△ABE≌△DAF(SAS).
(2)解:∵由(1)△BAE≌△ADF,
∴∠ABE=∠DAF.
∴∠BPF=∠ABE+∠BAP=∠BAE.
而AD∥BC,∠C=∠ABC=60°,
∴∠BPF=120°.
解析分析:(1)由题意可得AB=CD,AE=DF,∠BAE=∠ADF=120°,然后根据SAS判定△BAE≌△ADF;
(2)由△BAE≌△ADF得出∠ABE=∠DAF,进而得到∠BPF=∠BAE,再根据AD与BC平行,得出∠BPF的度数.
点评:本题考查了全等三角形的判定与性质以及等腰梯形的判定与性质.此题难度适中,解题的关键是注意数形结合思想的应用.